A Long Pseudo-comparison of Premice in $L[x]$

Farmer Schlutzenberg

Abstract

A significant open problem in inner model theory is the analysis of $\text{HOD}^L[x]$ as a strategy premouse, for a Turing cone of reals x. We describe here an obstacle to such an analysis. Assuming sufficient large cardinals, for a Turing cone of reals x there are premice M, N in $L[x]$, and countable in $L[x]$, such that the pseudo-comparison of $L[M]$ with $L[N]$ succeeds, is in $L[x]$, and lasts exactly ω^L stages. Moreover, we can take $M = M_1 | (\delta^+)^{M_1}$ where M_1 is the minimal iterable proper class inner model with a Woodin cardinal, and δ is that Woodin. We can take N such that $L[N]$ is M_1-like and short-tree-iterable.

1 Introduction

A central program in descriptive inner model theory is the analysis of HOD^W, for transitive models W satisfying $\text{ZF} + \text{AD}^+$; see [8], [6], [2], [5]. For the models W for which it has been successful, the analysis yields a wealth of information regarding HOD^W (including that it is fine structural and satisfies GCH), and in turn about W.

Assume that there are ω many Woodin cardinals with a measurable above. A primary example of the previous paragraph is the analysis of $\text{HOD}^L(\mathbb{R})$. Work of Steel and Woodin showed that $\text{HOD}^L(\mathbb{R})$ is an iterate of M_ω augmented with a fragment of its iteration strategy (where M_n is the minimal iterable proper class inner model with n Woodin cardinals). The addition of the iteration strategy does not add reals, and so the $\text{OD}^L(\mathbb{R})$ reals are just $\mathbb{R} \cap M_\omega$. The latter has an analogue for $L[x]$, which has been known for some time: for a cone of reals x, the $\text{OD}^L(x)$ reals are just $\mathbb{R} \cap M_1$. Given this, and further analogies between $L(\mathbb{R})$ and $L[x]$ and their respective HODs, it is natural to ask whether there the full $\text{HOD}^L[x]$ is an iterate of M_1, adjoined with a fragment of its iteration strategy. Woodin has conjectured that this is so for a cone of reals x; for a precise statement see [3, 8.23]. Woodin has proved approximations to this conjecture. He analyzed $\text{HOD}^{L[x,G]}$, for a cone of reals x, and $G \subseteq \text{Coll}(\omega, < \kappa)$ a generic filter over $L[x]$, where κ is the least inaccessible of $L[x]$; see [3, 8.21] and [2]. However, the conjecture regarding $\text{HOD}^L(x)$ is still open.
In this note, we describe a significant obstacle to the analysis of \(\text{HOD}^{L[x]} \).

1.1 Background We give a brief summary of some relevant definitions and facts. We assume familiarity with the fundamentals of inner model theory; see \([8],[4]\). One does not really need to know the analysis of \(\text{HOD}^{L[x,G]} \), but familiarity does help in terms of motivation; the system \(\mathcal{F} \) described below relates to that analysis. We do rely on some smaller facts from \([2], \S3\). Let us give some terminology, and recall some facts from \([2]\). We say that a premouse \(N \) is pre-\(M_1 \)-like iff \(N \) is proper class, \(1 \)-small, and has a (unique) Woodin cardinal, denoted \(\delta^N \). (The notion \(M_1 \)-like of \([2]\) makes further demands.) Let \(P,Q \) be pre-\(M_1 \)-like. Given a normal iteration tree \(\mathcal{T} \) on \(P, \mathcal{T} \) is maximal iff \(\text{lh}(\mathcal{T}) \) is a limit and \(L[M(\mathcal{T})] \) has no \(Q \)-structure for \(M(\mathcal{T}) \) (so \(L[M(\mathcal{T})] \) is pre-\(M_1 \)-like with Woodin \(\delta(\mathcal{T}) \)). A premouse \(R \) is a (non-dropping) pseudo-normal iterate of \(P \) iff there is a normal tree \(\mathcal{T} \) on \(P \) such that either \(\mathcal{T} \) has successor length and \(R = M^\mathcal{T}_{\omega} \), the last model of \(\mathcal{T} \) (and \([0,\omega], \mathcal{T} \) does not drop), or \(\mathcal{T} \) is maximal and \(R = L[M(\mathcal{T})] \). A premouse \(R \) is a pseudo-iterate of \(P \) iff there is \(n < \omega \) and \((R_0,R_1,\ldots,R_n) \) such that \(R_0 = P \) and \(R_n = R \) and each \(R_{i+1} \) is pre-\(M_1 \)-like and is a pseudo-normal iterate of \(R_i \). A pseudo-comparison of \((P,Q) \) is a pair \((\mathcal{T},\mathcal{U})\) of normal padded iteration trees of equal length, formed according to the usual rules of comparison, such that either \((\mathcal{T},\mathcal{U})\) is a successful comparison, or either \(\mathcal{T} \) or \(\mathcal{U} \) is maximal. A (\(z \))-pseudo-genericty iteration is defined similarly, formed according to the rules for genericity iterations making a real \(z \) generic for Woodin’s extender algebra. We say that \(P \) is normally short-tree-iterable iff for every normal, non-maximal iteration tree \(\mathcal{T} \) on \(P \) of limit length, there is a \(\mathcal{T} \)-cofinal wellfounded branch through \(\mathcal{T} \), and every putative normal tree \(\mathcal{T} \) on \(P \) of length \(\alpha + 2 \) has wellfounded last model (that is, we never first encounter an illfounded model at a successor stage). If \(P|\delta^P \in HC^{L[x]} \), then normal short-tree-iterability is absolute between \(L[x] \) and \(V \). If \(P,Q \) are normally short-tree-iterable then there is a pseudo-comparison \((\mathcal{T},\mathcal{U})\) of \((P,Q) \), and if \(\mathcal{T} \) has a last model then \([0,\omega],\mathcal{T} \) does not drop, and likewise for \(\mathcal{U} \).

By Turing determinacy we mean the statement that every set of Turing degrees either contains or is disjoint from a cone.

1.2 The \text{HOD} of \(L[x] \) It has been suggested\(^1\) that one might analyze \(\text{HOD}^{L[x]} \) using an \(\text{OD}^{L[x]} \) directed system \(\mathcal{F} \) such that:

- the nodes of \(\mathcal{F} \) are pairs \((N,s)\) such that \(s \in OR^{<\omega} \) and \(N \) is a normally short-tree-iterable, pre-\(M_1 \)-like premouse with \(N|\delta^N \in HC^{L[x]} \),
- for \((P,t),(Q,u) \in \mathcal{F} \), we have \((P,t) \leq_{\mathcal{F}} (Q,u) \) iff \(t \subseteq u \) and \(Q \) is a pseudo-iterate of \(P \), and
- \((M_1,\emptyset) \in \mathcal{F} \).

If such systems existed, satisfying some further requirements regarding the sets \(s \), strengthening the iterability requirements, and including countable directedness (for each fixed \(s \)), then there would have been a reasonable scenario for analyzing \(\text{HOD}^{L[x]} \), making use of Neeman’s genericity iterations.\(^2\)

The primary difficulty in analyzing \(\text{HOD}^{L[x]} \) in this manner is in arranging that \(\mathcal{F} \) be directed, even finitely. For this, it seems most obvious to try to arrange that \(\mathcal{F} \) be closed under pseudo-comparison of pairs. However, we show here that, given sufficient large cardinals, there is a cone of reals \(x \) such that if \(\mathcal{F} \) is as above, then \(\mathcal{F} \) is not closed under pseudo-comparison of pairs.
The proof proceeds by finding a node \((N, \emptyset) \in \mathbb{F}\) such that, letting \((\mathcal{T}, \mathcal{W})\) be the pseudo-comparison of \((M_1, N)\), then \(\mathcal{T}, \mathcal{W}\) are in fact pseudo-genericity iterations of \(M_1, N\) respectively, making reals \(y, z \in L[x]\) generic, where \(\omega_1^{L[y]} = \omega_1^{L[z]} = \omega_1^{L[x]}\). Letting \(W\) be the output of the pseudo-comparison, we will have \(W[\delta^W] \in L[x]\), so \(\omega_1^{W[z]} = \omega_1^{L[x]}\), which implies that \(\delta^W = \omega_1^{L[x]}\), so \((W, \emptyset) \notin \mathcal{F}\). We now proceed to the details.

2 The Pseudo-comparison

For a formula \(\varphi\) in the language of set theory (LST), \(\zeta \in \text{OR}\), and \(x \in \mathbb{R}\), let \(A^x_{\varphi, \zeta}\) be the set of all \(M \in \text{HC}_{L[x]}\) such that \(L[x] \models \varphi(\zeta, M)\), and \(L[M]\) is a normally short-tree-iterable pre-\(M_1\)-like premouse and \(M = L[M][\delta^{L[M]}]\).

Note that \(\varphi\) does not use \(x\) as a parameter. So by absoluteness of normal short-tree-iterability (between \(L[x]\) and \(V\), for elements of \(\text{HC}_{L[x]}\)), \(A^x_{\varphi, \zeta}\) is OD\(_{L[x]}\). So \(A^x_{\varphi, \zeta}\) is a collection of premice like those involved in the system \(\mathcal{F}\) (restricted to their Woodins).

Theorem Assume Turing determinacy and that \(M^x_1\) exists and is fully iterable. Then for a cone of reals \(x\), for every formula \(\varphi\) in the LST and every \(\zeta \in \text{OR}\), if \(M_1[\delta^{M_1}] \in A^x_{\varphi, \zeta}\) then there is \(R \in A^x_{\varphi, \zeta}\) such that the pseudo-comparison of \(M_1\) with \(L[R]\) has length \(\omega_1^{L[x]}\).

Proof Suppose not. Then we may fix \(\varphi\) such that for a cone of \(x\), the theorem fails for \(\varphi, x\). Fix \(z\) in this cone with \(z \geq_T M^x_1\). Let \(\mathcal{W}\) be the \(z\)-genericity iteration on \(M_1\) (making \(z\) generic for the extender algebra), and \(Q = M_{\mathcal{W}}\). By standard arguments (see [21]), \(Q[z] = L[z]\).

\[
\text{ih}(\mathcal{W}) = \omega_1^{\delta^\mathcal{W}[z]} + 1 = \delta^Q + 1,
\]

\[
Q[\delta^Q] = M(\mathcal{W} \upharpoonright \delta^\mathcal{W}), \quad \text{and} \quad \mathcal{T} = \text{def } \mathcal{W} \upharpoonright \delta^Q \text{ is the } z\text{-pseudo-genericity iteration of } M_1\text{, and } \mathcal{T} \in L[z].
\]

Let \(\mathbb{B}\) be the extender algebra of \(Q\) and let \(\mathbb{P}\) be the finite support \(\omega\)-fold product of \(\mathbb{B}\). For \(p \in \mathbb{P}\) and \(i < \omega\) let \(p_i\) be the \(i\)th component of \(p\). Let \(G \subseteq \mathbb{P}\) be \(Q\)-generic, with \(z_0 = z\) where \(x = \text{def } (z_i)_{i < \omega}\) is the generic sequence of reals. Then

\[
Q[G] = Q[x] = L[x]
\]

and \(x >_T z\). Let \(\zeta \in \text{OR}\) witness the failure of the theorem with respect to \(\varphi, x\). So \(M_1[\delta^{M_1}] \in A^x_{\varphi, \zeta}\).

By [1, Lemma 3.4] (essentially due to Hjorth), \(\mathbb{P}\) is \(\delta^Q\)-cc in \(Q\), so \(\delta^Q \geq \omega_1^{L[x]}\), but \(\delta^Q = \omega_1^{L[z]}\), so \(\delta^Q = \omega_1^{L[x]}\). So it suffices to see that there is some \(R \in A^x_{\varphi, \zeta}\) such that the pseudo-comparison of \(M_1\) with \(L[R]\) has length \(\delta^Q\).

For \(e \in \omega\) and \(y \in \mathbb{R}\) let \(\Phi^e_\mathbb{P}: \omega \to \omega\) be the partial function coded by the \(e\)th Turing program using the oracle \(y\). Let \(e \in \omega\) be such that \(\Phi^e_\mathbb{P}\) is total and codes \(M_1[\delta^{M_1}]\). Let \(x\) be the \(\mathbb{P}\)-name for \(x\), and for \(n < \omega\) let \(z_n\) be the \(\mathbb{P}\)-name for \(z_n\). Let \(p \in G\) be such that \(\text{p}[\delta^\mathcal{W}] = \psi(z_0)\), where \(\psi(v)\) asserts "\(\Phi^e_\mathbb{P}\) is total and codes a premouse \(R \in A^z_{\varphi, \zeta}\) such that the \(v\)-pseudo-genericity iteration of \(L[R]\) produces a maximal tree \(\mathcal{W}\) of length \(\delta^Q\) with \(M(\mathcal{W}) = L[\mathbb{B}] \upharpoonright \delta^Q\)." In the notation of this formula,

\[
\text{p}[\delta^\mathcal{W}] = \psi(z_0), \quad \text{because } \text{p}[\delta^\mathcal{W}] = \psi(z_0).
\]
By genericity, we may fix \(q \in G \) such that \(q \leq p \) and for some \(m > 0, q_m = q_0 \). Note that \(q \models Q^G \models \psi(\check{z}_m) \).

Let \(\hat{R}_0 \) be the \(P \)-name for the premouse coded by \(\Phi_{\check{z}_1}^{\check{z}_0} \) (or for \(\emptyset \) if this does not code a premouse). Also let \(\check{z}_0', \check{z}_1' \) be the \(B \times B \)-names for the two \(B \times B \)-generic reals (in order), and let \(R_i' \) be the \(B \times B \)-name for the premouse coded by \(\Phi_{\check{z}_i}' \).

We may fix \(r \leq q, r \in G \), such that

\[
r \models Q^G \models "\hat{R}_0 \neq \hat{R}_m". \tag{1}
\]

For otherwise there is \(r \leq q, r \in G \), such that \(r \models Q^G \models \hat{R}_0 = \hat{R}_m \). But since

\[
M_1|\delta^{M_1} = \hat{R}_0^G \notin Q,
\]

there are \(s, t \in B, s, t \leq r_0 \), such that

\[
(s, t) \models B \times B \models "\hat{R}_0 \neq \hat{R}_1".
\]

Therefore there are \(u, v \in B \), with \(u \leq r_0 \) and \(v \leq r_m \), such that

\[
(u, v) \models B \times B \models "\hat{R}_0 \neq \hat{R}_1".
\]

Let \(w \leq r \) be the condition with \(w_i = r_i \) for \(i \neq 0, m \), and \(w_0 = u \) and \(w_m = v \). Then

\[
w \models Q^G \models "\hat{R}_0 \neq \hat{R}_m",
\]

a contradiction.

So letting \(R = \hat{R}_m^G \), we have \(R \neq M_1|\delta^{M_1} \) and \(R \in A^{\check{z}}_{\check{z}_0} \) and \(Q|\delta^Q = M(\mathcal{U}) \), where \(\mathcal{U} \) is the \(A^{\check{z}}_{\check{z}_0} \)-pseudo-genericity iteration of \(L[R] \), and \(\text{lh}(\mathcal{U}) = \delta^Q \). We defined \(\mathcal{T} \) earlier. Let \(\mathcal{T}^+, \mathcal{U}^+ \) be the padded trees equivalent to \(\mathcal{T}, \mathcal{U}^+ \), such that for each \(\alpha \), either \(E_\alpha^{\mathcal{T}^+} \neq \emptyset \) or \(E_\alpha^{\mathcal{U}^+} \neq \emptyset \), and if \(E_\alpha^{\mathcal{T}^+} \neq \emptyset \neq E_\alpha^{\mathcal{U}^+} \) then \(\text{lh}(E_\alpha^{\mathcal{T}^+}) = \text{lh}(E_\alpha^{\mathcal{U}^+}) \).

Let \((\mathcal{T}', \mathcal{U}') \) be the pseudo-comparison of \((M_1, L[R]) \) (recall that \(L[R] \) is normally short-tree iterable as \(R \in A^{\check{z}}_{\check{z}_0} \)).

We claim that \((\mathcal{T}', \mathcal{U}') = (\mathcal{T}^+, \mathcal{U}^+) \); this completes the proof. For this, we prove by induction on \(\alpha \) that

\[
(\mathcal{T}', \mathcal{U}') \models (\alpha + 1) = (\mathcal{T}^+, \mathcal{U}^+) \models (\alpha + 1).
\]

This is immediate if \(\alpha \) is a limit, so suppose it holds for \(\alpha = \beta \); we prove it for \(\alpha = \beta + 1 \). Let \(\lambda = \text{lh}(E_\beta^{\mathcal{T}^+}) \) or \(\lambda = \text{lh}(E_\beta^{\mathcal{U}^+}) \), whichever is defined. Because \(M(\mathcal{T}^+) = Q|\delta^Q = M(\mathcal{U}^+) \), the least disagreement between \(M_\beta^{\mathcal{T}^+} \) and \(M_\beta^{\mathcal{U}^+} \) has index \(\geq \lambda \), so we just need to see that \(E_\beta^{\mathcal{T}^+} \neq E_\beta^{\mathcal{U}^+} \).

So suppose that \(E_\beta^{\mathcal{T}^+} = E_\beta^{\mathcal{U}^+} \). In particular, both are non-empty. Then there is \(s \in G \) such that \(s \leq r \) (see line (1)) and \(s \models Q^G \models "E \subseteq L[R]|\hat{\lambda} \), but \(E \notin \check{V}^\gamma" \). For \(i = 0, m \), let \(\mathcal{T}_i \) be the \(\check{z}_i \)-pseudo-genericity iteration of \(L[R] \), then \(\mathcal{T}_0 \) and \(\mathcal{T}_m \) use identical non-empty extenders \(E \) of index \(\check{\lambda} \). Because

\[
s \models Q^G \models \psi(\check{z}_0) \) & \(\psi(\check{z}_m),\)
\]

also \(s \models Q^G \models "E \subseteq L[R]|\hat{\lambda} \), but \(E \notin \check{V}^\gamma" \); here \(E_\beta^{\mathcal{T}^+} \notin Q \) because \(\lambda \) is a cardinal of \(Q \). But since \(\mathcal{T}_i^G \) is computed in \(Q(\check{z}_i^G) \) (for \(i = 0, m \)) we can argue as before (as in the proof of the existence of \(r \) as in line (1)) to reach a contradiction. \(\square \)
A slightly simpler argument, using $B \times B$ instead of P, proves the weakening of the theorem given by dropping the parameter ζ. The author does not see how to prove the full theorem using $B \times B$ instead of P. This is because in the argument given, ζ depends on x, and the choice of the conditions p,q depend on ζ.

Notes

1. For example, at the AIM Workshop on Descriptive inner model theory, June, 2014.

2. Woodin’s genericity iterations produce trees of length $\omega^L[x]$. Moreover, it seems that $HC^L[x]$ need not be sufficiently closed under the existence of collapse generics to allow an obvious analysis of $\text{HOD}^L[x]$ using Neeman’s genericity iterations. (Thanks to John Steel for pointing out an error that appeared in a draft of this paper, regarding this point.)

3. So if one tries to run the same argument but with $B \times B$ instead of P, one must first choose a generic pair of reals $x = (z_0,z_1)$, thus determining ζ, but then even if we had tried to be selective about z_1, it seems there might not be any $q \in G$ analogous to that found in the proof using P. On the other hand, if there is no parameter ζ involved, we can be selective enough about z_1.

References

http://dx.doi.org/10.1007/978-3-662-21903-4. Zbl 0805.03042. MR 1300637 (95m:03099). 2

farmer.schlutzenberg@gmail.com
https://sites.google.com/site/schlutzenberg/home-1